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Abstract 

We prove that there are quantum mechanical observables which are sensitive to the type 
of state-vector (first type or second type) describing two correlated physical systems, in 
the sense that the expectation value of these 'sensitive observables' is measurably different 
in the two cases. The proof centers around Bell's inequality since we show that in quantum 
mechanics for all state-vectors of the second type (and only for them) sensitive observables 
exist in the absence of super-selection rules. Experimental verification of the existence of 
sensitive observables rules out local hidden variables. 

1. Introduction 

It  has been proved by Bell (1965), Clauser et al. (1969) and Wigner that  
the correlat ion functions calculated according to local hidden variable 
theories satisfy the inequality 

]e(a,b) - P(a,b')] <~ 2 - P ( a ' , b ) - P ( a ' , b ' )  (1.1) 

Here P(a,b)  is a suitably defined correlat ion function,  related to the 
measurements  in two separate regions o f  space o f  the dicotomic observables 
A(a) and B(b).  The parameters  a and b refer to the settings o f  the experi- 
mental  apparatuses and the possible values o f  A and B are A = +1, B = + l . t  

t The stronger inequality [P(a,b) -P(a,b')] + [P(a',b) + P(a',b')[ -< 2 can easily be 
proved. See F. Selleri, Lettere al Nuovo Cimento, to be published. 
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It is known (Bell, 1965; Clauser et al., 1969; Wigner) that the quantum 
mechanical correlation functions, defined by 

P(a, b) = ( V IA(a ) B(b) l V> (1.2) 

do not always satisfy the inequality (1.1). In fact Bell could show that the 
'singlet' state of the two observables violates (1.1). 

Let a quantum mechanical system be given, consisting of two sub- 
systems S and T. If  the state-vector of  the system can be written as a product 

Iv> = I~'> l~> (1.3) 

where 14'> refers to subsystem S and I~) to subsystem T, we say that 
] V> is a vector of  the first type. If  it is not possible to write [ V> under the 
form (1.3) we say that it is a vector of  the second type.$ 

The state-vector I V> can always be written in terms of the state-vector 
ItOi> describing S and state-vector 1~> describing T: 

IV> = Z e,i14',> Iq~J> (1.4) 
iJ 

It can be proved that the vector I V>, given by (1,4), is of  the first type 
if and only if the coefficients Cij are factorizable, which means that one 
can write C~j = ~flj.  

In fact, if  Ct~=~iflj we can cast IV> under the form (1.3) where 
14'> = ~i~[4'i> and [~> = 2;jfljlCj>. 

Furthermore, if (1.3) holds, we can develop ]4'> over the states [4'~> with 
coefficients at and I~b> over I~j> with coefficients flj and derive (1.4) with 

Now suppose we have a statistical ensemble of  N identical systems S. 
We say that the ensemble is a pure case if all the N systems have the same 
state-vector. 

If  nl systems have state-vector I4'a>, n2 systems have state-vector ]4'2> 
and so on (nl + n2 + ... = N), we say that the ensemble is a mixture of the 
first type. If  S is a part of  a larger system Z = S + T such that the ensemble 
of  NZ's is a pure case with a state-vector of  the second type (so that S as 
such does not have a state-vector), we say that the ensemble of  systems S 
is a mixture of  the second type. This definition can be obviously generalized 
to the case where the ensemble of  Z's is a mixture of the first type of state- 
vector of  the second type. 

2. Indifferent Observables and Sensitive Observables 
In the present paragraph we will discuss ensembles of systems S which 

are described as mixtures of  the second type, namely such that every 
individual system S does not have a state-vector but for which a larger 

:~ This definition is strictly analogous to the one of proper and improper mixtures 
given by B. d'Espagnat, Conceptions de la physique Contemporaine (1965). Hermann,  
Paris. 
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system Z = S + T can be found which does. We will first restrict our dis- 
cussion to ensembles of  systems Z which are pure samples. 

For  a given ensemble of  systems Z = S + T, such that S and T are de- 
scribed as belonging to a mixture of  the second type, we divide the observables 
in two classes. We define as indifferent those observables whose expectation 
value is such that a mixture of  the first type can be found giving the same 
expectation value. We define instead as sensitive those observables which 
are not  indifferent. 

The main problem of this section is, therefore, to find which observables 
are indifferent and which ones are sensitive. In order to solve this problem 
let us consider two observables As, As" of the system S and two Br, Br '  of  
the system T. Obviously the operator 

F = A s  |  |  (2.1) 

is still hermitian and can represent an observable of  the system 2;. Let us 
prove the following theorem. 

THEOREM i. If As commutes with As' and BT commutes with B~r' the 
observable F is indifferent. 

In fact if IV) is the state-vector of  the system 27 we can always develop it 
over a set of  orthonormal eigenstates [$~) common to As and As" and, 
simultaneously, over a similar set of  eigenstates 1#~) common to Br  and 
BT" : 

~3 

Since we are studying mixtures of  the second type we must assume that 
the coefficients C~j are not factorizable (see Section 1). This assumption is, 
however, not used in the proof  of  the theorem. Let us calculate the expecta- 
tion value of  F on the statistical ensemble. 

P=<vlrlw> 

i j  lm 

= c i j c o n [ a z f i t b m • j m - t - a  I ( ~ i t b m t 6 j m ]  
i j  Im 

where a~, bin, a, ' ,  b,,' are eigenvalues of  the operators As, Br, As', BT' 
respectively. From (2.2) one can easily obtain 

i f=  ~ [c,jl z. [a, bj + a,' b f]  (2.3) 
i j  

The same value fo r /~  could, however, be obtained with a mixture of  the 
first type of  N systems 27, N]Cll[ z of  which with state-vector ]~kl)]cb~), 
N[C~2[ 2 with [~q)1~2), and so on. By definition of indifferent observable 
the theorem is thus proved. 
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From the theorem the following corollaries follow: 

C1 Any observables As of  the system S(BT of  the system T) is indifferent. 
In fact such an observable is a particular case of (2.1) with Br  = 1T, 
As' = Os, Br' = It(As = Is, As" = Is, Br' = Or). 

C2 Any observable of  the system ~ of  the type As + Br' is indifferent. This 
is also a particular case of  (2.1) with Br  = l r  and As' = ls. 

C3 Any observable of  the system ~ of  the type As @ Br is indifferent. This 
particular case of  (2.1) can be obtained for As" = Os, Br" = IF. 

The operators ls, Ir(0s,0r) above are the unit (the zero) operators in 
the Hilbert spaces of  the systems S and Trespectively (Furry, 1936). 

At this point it would look natural to try to prove that F, as defined in 
(2.1), is a sensitive observable if As does not commute with As' and/or Br  
does not commute with Br'.  This is, however, not always true, as we shall 
see. 

We will concentrate our attention on dichotomic observables and try 
to discover an observable difference between mixtures of  the first and of  
the second type. Any projection operator P of  Hilbert space is a dichotomic 
observable and has 1 and 0 as eigenvalues. We will define from such an 
observable a new one, D, having +1 and -1  as eigenvalues. Obviously 

D = 2P - 1 (2.4) 

It is of  intuitive validity and is also very simple to prove that the expecta- 
tion value (r/lDIr/} on any state It/} or on any mixture of such states has 
modulus not exceeding unity. 

Consider now a mixture of  systems 27 = S + T and let this be a mixture 
of  the first type for S and T. Let then Ds, Ds' be two different dichotomic 
observables for S and similarly Dr, Dr" for T. We will then prove the 
following: 

THEOREM II. For a mixture of  the first type the inequality 

[Ds | D r -  Ds | Dr'l + lDs' | Dr + Ds' | Dr'l <~ 2 (2.5) 

(Bell's inequality) is always satisfied, if  the bar denotes the expectation 
value. 

We will start by proving first that (2.5) is satisfied on a pure sample. 
There it becomes 

l<nl[Os | Dr - Os @ Dr']In>l 
+ l(nl[Ds' @ Or+Ds" @ D~']ln>l < 2  (2.6) 

I f  we write It/} = [if)[~} where [~) describes S and 14} describes T we 
get <niPs | Orl•) = <~lOsl~,}<r162 which can be written 

{rtlDs @ Drift} -- Ds.Dr 
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where 
Ds = <q/lDsI•>; Dr  = <~lDr[4,> 

Similar expressions can be written for the other matrix elements entering 
in (2.6). Therefore, one can write 

[ h s D r - / ) s  Dr'l + [Ds 'Dr  + Ds'Dr't  ~< 2 (2.7) 
o r  

Ibsi. Ibr - b f l  + lbs'l, ibr  + Dr'l ~ 2 (2.8) 
Recalling that ]Ds[ ~< 1 ; [Ds'[ ~< 1 we see that the inequality 

l/3r - Dr'[ + lDr + Dr'l ~< 2 (2.9) 

is stronger than (2.8) in the sense that if (2.9) is satisfied then certainly so 
will be (2.8) (and therefore (2.5)). It is a rather simple matter to show that 
(2.9) is, in fact, always satisfied. 

The theorem is so proved for a pure sample. Let us consider next a 
mixture of the first type for S and T. In such a case we have, by definition 
(if we have n, systems with a state-vector It/,) of  the first type), 

nr �9 ' D  n ,  

I" l" 

Therefore the left-hand side of  (2.5) becomes (p, = n,/N) 

~.p,(Ds | D r ) , -  ~p,~D~ | DrZ)r 
r 1" 

D ' D ' Dr') ,  + P,( s |  s | 
r 

= ~p , { (Os  | D r > , -  (Os | Dr'>,} 
/ 

/ + ~ p,{(Ds' | O~), + (Ds" | Dr'),} 

<<. 2p,[(Ds | D r ) , - ( D s |  Dr'),l + 2p, l(Ds" | Dr), + (Ds' | Dr'),] 

= ~p ,{ l (Ds  | Dr) ,  - (Ds | Dr%l + l(Ds' | Dr) ,  + <Ds" | Dr'),l} 
1" 

<Zp, .2=2  
I" 

As a conclusion Bell's inequality holds for an arbitrary mixture of the first 
type. Theorem II is fully proved. 

THEOREM III. For a mixture of  the second type the observables Ds, Dr, 
Ds', Dr" can be chosen in such a way that the inequality 

l(Ds | Dr)  - (Ds | Dr')[ + I(Os' | Dr)  + <Ds" | Dr')I  ~< 2 (2.10) 

is not satisfied i f  no super-selection rules are present. 
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We will give the proof  of the theorem in a two-dimensional Hilbert space 
in order to simplify it. The proof  will, nevertheless, be of  direct physical 
interest in simple cases like that of  spin-�89 states, helicity states, CP-states 
of  K ~ and so on. 

We have two basic vectors I~1) and ]~2) for system S and [q~l) and 
[~2) for system T. If the state-vector of  S + T is It/) one can always write, 
for some choice of  10t) and [~j) 

It/) = ~ c,[0~ ) [qS,) (2.11) 
i 

In fact for some other complete set of  vectors I qSj) one can consider 
the development 

1.> = E 
Cj 

and Put 
E cislCJ) = t i l e , )  j = 1,2 
i 

where the Ci's are some normalizing coefficients chosen in such a way that 
(~f]~b~) = 1 whence (2.11) follows. 

Let us introduce the projection operators 

e s =  [01) <4'11 
P r =  1r162 

and the corresponding D-operators 

Ds = 2Ps - 1 ; Dr  = 2PT -- 1 

Ds' = 2Ps" - 1 ; DT' = 2Pr '  -- 1 

It is a rather simple matter to show that the following results hold 

( Ds | DT> = 1 
(Ds  | Dr'> = [fl~[2_ [fl212__ Aft 
<Ds' | D r )  = l~d 2 -  I ~ W -  = A= 

( Ds' | Dr ' )  = A~. Aft + 8 Re [c1" czar* azfl~* f12] 

Notice that -1  ~< Aa ~< 1 and -1  ~< Aft ~< 1. Therefore 

I(Ds | D r > -  <Ds | Dr ' ) l  = I1 - A 3 I  = 1 - A 3  
l(Ds' | DT) -F (Ds '  | D~'>I >/Aa(1 + Aft) + 8 Re [c~* c2 a~* a2 fi~* flz] 

Therefore, if we prove that the inequality 

1 - Aft + Ac~(1 - Aft) + 8 Re [c1" c2 ~ *  az fl~* f12] ~< 2 

can be violated, we are sure that (2.10) can be violated as well. The previous 
inequality can be transformed to 

[(1 - de2) (1 - Acd) (1 - AfiZ)ll/2cos(r + r + r 

~< (1 = Aa)(1 + Aft) (2.12) 
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where r qS~ and Ca are the relative phases of cl, c2, of  al, ctz and of  ftl, ft2, 
respectively, and where Ac = lc l 2 - Ic2 l  2 and -1  < Ac < 1 (no equalities 
here because we deal with a vector It/) of  the second type). 

One obtains easily, unless for Act--- 1 and/or Aft = - 1  (cases in which 
(2.12) is satisfied as an equality). 

[ 1 -  Ac2]~/2[~ + Aa l -  Aft] 1/2 
- - A c t ' l ~ J  c o s ( f ~ + r 1 6 2  (2,13) 

Now 1 -  Ac 2 is a fixed numerical quantity different from zero for a 
given It/) of  the second type. It is obvious that we can choose r and Ca 
in such a way that 

cos (r + r + r = 1 

and, furthermore, that we can choose a~, ct2, ftl,/12 in such a way that 

l + A c t  1 - A f t  1 > 
1 - Act" 1 + Aft 1 - Ac 2 

We conclude that (2.13) (and therefore (2.10)) can be violated for a 
suitable choice of  the constant ct,, ctz, ft~, ft2 which amounts to a suitable 
choice of  the observables Ds' and Dr'. The theorem is thus proved. 

Notice that if It/) were of  the first type one of  the c,'s should necessarily 
vanish. This leads to Ac 2 = 1 and therefore (2.12) becomes (1 - Act)(1 + Aft) 
>/0 which is always satisfied, as it should be. 

It follows from Theorem III that the observable 

FD = Ds | (Dr - Dr')  + Ds' | (Dr + Dr') (2.14) 

is sensitive if Ds" and Dr' are chosen in a suitable way such as to violate 
Bell's inequality. In fact, i f  FD as given in (2.14) were indifferent it would 
necessarily follow (we indicate average over a mixture of  the first type 
with a bar) 

I(Fo)[ = jrD[ = lOs | (Dr  - DT') + Ds' | (Dr  + Dr')] 

<~ IDs | (Dr  -- Dr')[ + IDs" | (Dr  + Dr')l 

= lOs | D T - D s  | Dr'l + [Ds" | D r + D s ' + D r ' ]  
< 2  

the last step being justified by Theorem II. The above is like saying that our 
mixture of  the second type satisfies Bell's inequality with the observables 
Ds, Ds', Dr, Dr'  contrary to the previous theorem. 

Therefore, the observable (2.14) is really a sensitive one. This means 
that one can measure ( F , )  (with a suitable choice of  F , )  over an ensemble 
and decide whether he is dealing with a mixture of  the first or of  the second 
type from the obtained numerical value of  ( F , ) .  This does not contradict 
Theorem I because Ds does not commute with Ds" (except if a~ = 0 or 
ct2 = 0 in which cases Bell's inequality is not violated) and Dr does not 
commute with Dr '  (again except for the cases ft~ = 0 or ft2 = 0). 
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That Ds and Ds' in general do not commute is easy to see. In fact 

while 
Ps'Ps = l :l IV,:> < ,11 + I 

whence [Ps,Ps']---0 only if ~ = 0 or ~2 = 0. Similarly one proves that 
[PT,PT'] = 0 only if fll = 0 or f12 = 0. 

Notice that the violation of  Bell's inequality could not be obtained for 
all choices of ~l, c~2, fli, f12. In fact, if  we take A~ < 0 and Aft > 0 the in- 
equality (2.13) is satisfied. Therefore, we conclude that there are indifferent 
observables of  the type F = As | BT: + A ' s | Br '  even if [As, As'] ~ 0 
and/or [Br, Br']  :/: 0. Theorem I can, therefore, not be generalized to the 
statement 'if and only if [As, As'] = 0 and [Br, Br']  = 0 the observable F 
is indifferent'. 

3. Conclusions 

It should be stressed that our main result (Theorem III) was proved by 
implicitly assuming that all projection operators are observable. This is 
not true when super-selection rules are present and therefore mixtures of  
the second type may not be observably different from local hidden variable 
theories (in the sense of  Bell's inequality) when there are super-selection 
rules. This turns out in fact to be the case for isotropic-spin eigenstates. 

It is very interesting to notice that Jauch's definition of  state of  a physical 
system (Jauch, 1970) led him to the conclusion that mixtures of the second 
type do not exist. Therefore, in view of  Theorem III, the experiment 
performed by Clauser & Freedman (1973), can be considered as the first 
direct experimental check of the existence of  state-vectors of  the second 
type. In view of  the delicacy of  this experiment and of  the great conceptual 
value of  its implications it seems very important to perform similar experi- 
ments in other cases before ruling out definitely local hidden variable 
theories. Second type state-vectors are responsible for many paradoxes of  
Quantum Mechanics (ERP, SchrSdinger's cat, theory of measurement) 
and, in general, for the inconsistency of  a realistic philosophy with the 
quantum mechanical axioms.t 
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I" For a clear discussion of this point see the quoted book by d'Espagnat. 


